

Math 12Honors Ch6: COMPLEX Number ReVIEW

Question 1 (**)

$$w = \frac{-9+3i}{1-2i}.$$

Find the modulus and the argument of the complex number w .

Question 2 (**)

Solve the equation

$$2z^2 - 2iz - 5 = 0, z \in \mathbb{C}.$$

Question 3 (**)

Find the value of x and the value of y in the following equation, given further that $x \in \mathbb{R}$, $y \in \mathbb{R}$.

$$(x+iy)(2+i) = 3-i.$$

Question 4 (**)

$$z = \frac{\lambda+4i}{1+\lambda i}, \lambda \in \mathbb{R}.$$

Given that z is a real number, find the possible values of λ .

Question 5 (**)

Find the values of x and y in the equation

$$x(1+i)^2 + y(2-i)^2 = 3+10i, x \in \mathbb{R}, y \in \mathbb{R}.$$

Question 6 (**)

Find the value of x and the value of y in the following equation, given further that $x \in \mathbb{R}$, $y \in \mathbb{R}$.

$$(x+iy)(3+4i) = 3-4i.$$

Question 7 ()**

The complex number z satisfies the equation

$$4z - 3\bar{z} = \frac{1-18i}{2-i},$$

where \bar{z} denotes the complex conjugate of z .

Solve the equation, giving the answer in the form $x+iy$, where x and y are real numbers.

Question 9 ()**

$$z = 22+4i \quad \text{and} \quad \frac{z}{w} = 6-8i.$$

By showing clear workings, find ...

- ... w in the form $a+bi$, where a and b are real numbers.
- ... the modulus and the argument of w .

Question 10 ()**

$$z = (2-i)^2 + \frac{7-4i}{2+i} - 8.$$

Express z in the form $x+iy$, where x and y are real numbers. giving the answer in the form $x+iy$, where x and y are real numbers.

Question 12 (+)**

Solve the following equation.

$$z^2 = 21-20i, \quad z \in \mathbb{C}.$$

Give the answers in the form $a+bi$, where $a \in \mathbb{R}$ and $b \in \mathbb{R}$.

Question 8 ()**

$$z = -3+4i \quad \text{and} \quad zw = -14+2i.$$

By showing clear workings, find ...

- ... w in the form $a+bi$, where a and b are real numbers.
- ... the modulus and the argument of w .

Question 11 ()**

The complex conjugate of z is denoted by \bar{z} .

Solve the equation

$$2z - 3\bar{z} = \frac{-27+23i}{1+i},$$

Question 13 (+)**

The cubic equation

$$2z^3 - 5z^2 + cz - 5 = 0, \quad c \in \mathbb{R},$$

has a solution $z = 1-2i$.

Find in any order ...

- ... the other two solutions of the equations.
- ... the value of c .

Question 14 (+)**

The quadratic equation

$$z^2 - 2z + 1 - 2i = 0, \quad c \in \mathbb{R},$$

has a solution $z = -i$.

Find the other solution.

Question 15 (+)**

$$z - 8 = i(7 - 2\bar{z}), \quad z \in \mathbb{C}.$$

The complex conjugate of z is denoted by \bar{z} .

Determine the value of z in the above equation, giving the answer in the form $x + iy$, where x and y are real numbers.

Question 16 (+)**

$$z^3 + Az^2 + Bz + 26 = 0, \quad \text{where } A \in \mathbb{R}, \quad B \in \mathbb{R}$$

One of the roots of the above cubic equation is $1 + i$.

- Find the real root of the equation.
- Determine the values of A and B .

Question 17 (+)**

The complex conjugate of z is denoted by \bar{z} .

Solve the equation

$$z - 12 = i(9 - 2\bar{z}),$$

giving the answer in the form $x + iy$, where x and y are real numbers.

Question 18 (+)**

The complex number z satisfies the equation

$$2z - i\bar{z} = 3(3 - 5i),$$

where \bar{z} denotes the complex conjugate of z .

Determine the value of z , giving the answer in the form $x + iy$, where x and y are real numbers.

Question 19 (+)**

The cubic equation

$$2z^3 - z^2 + 4z + p = 0, \quad p \in \mathbb{R},$$

is satisfied by $z = 1 + 2i$.

- Find the other two roots of the equation.
- Determine the value of p .

Question 20 (+)**

Solve the following equation.

$$w^2 = 5 - 12i, \quad w \in \mathbb{C}.$$

Give the answers in the form $a + bi$, where $a \in \mathbb{R}$ and $b \in \mathbb{R}$.

Question 21 (+)**

$$z = 1 + \sqrt{3}i \quad \text{and} \quad \frac{w}{z} = 2 + 2i.$$

Find the exact value of the modulus of w and the exact value of the argument of w .

Question 22 (+)**

The following cubic equation is given

$$z^3 + az^2 + bz - 5 = 0,$$

where $a \in \mathbb{R}$, $b \in \mathbb{R}$.

One of the roots of the above cubic equation is $2 + i$.

- Find the other two roots.
- Determine the value of a and the value of b .

Question 23 (+)**

The following cubic equation is given

$$z^3 + pz^2 + 6z + q = 0,$$

where $p \in \mathbb{R}$, $q \in \mathbb{R}$.

One of the three solutions of the above cubic equation is $5 - i$.

- Find the other two solutions of the equation.
- Determine the value of p and the value of q .

Question 24 (+)**

The complex number z is defined as

$$z = i(1+i)(1-2i)^2.$$

It is further given that

$$\overline{z-3i} + P(z-3i) = Q\overline{z}$$

where P and Q are **real** constants.

Find the value of P and the value of Q .

Question 25 (*)**

$$z = \sqrt{3} + i \quad \text{and} \quad w = 3i.$$

- Find, in exact form where appropriate, the modulus and argument of z and the modulus and argument of w .
- Determine simplified expressions for zw and $\frac{w}{z}$, giving the answers in the form $x+iy$, where $x \in \mathbb{R}$, $y \in \mathbb{R}$.
- Find, in exact form where appropriate, the modulus and argument of zw and the modulus and argument of $\frac{w}{z}$.

Question 26 (*)**

Find the value of x and the value of y in the following equation, given further that $x \in \mathbb{R}$, $y \in \mathbb{R}$.

$$\frac{1}{x+iy} - \frac{1}{1+i} = 2 - 3i.$$

Question 27 (*)**

Find the square roots of $1 + i\sqrt{3}$.

Give the answers in the form $a + bi$, where $a \in \mathbb{R}$ and $b \in \mathbb{R}$. giving the answer in the form $x + iy$, where x and y are real numbers.

Question 28 (*)**

Solve the equation

$$\frac{13z}{z+1} = 11 - 3i, \quad z \in \mathbb{C},$$

Question 29 (*)**

The complex conjugate of w is denoted by \bar{w} .

Given further that

$$w = 1 + 2i \quad \text{and} \quad z = w - \frac{25\bar{w}}{w^2},$$

show clearly that z is a real number, stating its value.

Question 30 (*)**

The following cubic equation is given

$$z^3 + 2z^2 + az + b = 0,$$

where $a \in \mathbb{R}$, $b \in \mathbb{R}$.

One of the roots of the above cubic equation is $1 + i$.

- Find the real root of the equation.
- Find the value of a and the value of b .

Question 31 (*)**

The following complex numbers are given.

$$z_1 = 2 - 2i, \quad z_2 = \sqrt{3} + i \quad \text{and} \quad z_3 = a + bi \quad \text{where } a \in \mathbb{R}, b \in \mathbb{R}.$$

a) If $|z_1 z_3| = 16$, find the modulus z_3 .

b) Given further that $\arg\left(\frac{z_3}{z_2}\right) = \frac{7\pi}{12}$, determine the argument of z_3 .

c) Find the values of a and b , and hence show $\frac{z_3}{z_1} = -2$.

Question 32 (*)**

Solve the equation

$$2z^4 - 14z^3 + 33z^2 - 26z + 10 = 0, \quad z \in \mathbb{C}$$

given that one of its roots is $3 + i$.

Q1 $ w =3\sqrt{2}$, $\arg w = -\frac{3\pi}{4}$	Q7 $z = 4 - i$	Q13 $z_2 = 1 + 2i$, $z_3 = \frac{1}{2}$, $c = 12$	Q19 $1 - 2i, -\frac{3}{2}$, $p = 15$
Q2 $z = \pm \frac{3}{2} + \frac{1}{2}i$	Q8 $w = 2 + 2i$, $ w = 2\sqrt{2}$, $\arg w = \frac{\pi}{4}$	Q14 $z_2 = 2 + i$	Q20 $w = \pm(3 - 2i)$
Q3 $(x, y) = (1, -1)$	Q9 $w = 1 + 2i$, $ w = \sqrt{5}$, $\arg w \approx 1.11^\circ$	Q15 $z = 2 + 3i$	Q21 $ w = 4\sqrt{2}$, $\arg w = \frac{7\pi}{12}$
Q4 $\lambda = \pm 2$	Q10 $-3 - 7i$	Q16 $z = -13$, $A = 11$, $B = -24$	Q22 $z_2 = 2 - i$, $z_3 = 1$, $a = -5$, $b = 9$
Q5 $x = 7$, $y = 1$	Q11 $z = 2 + 5i$	Q17 $z = 2 + 5i$	Q23 $z_2 = 5 + i$, $z_3 = 2$, $p = -8$, $q = 52$
Q6 $(x, y) = \left(-\frac{7}{25}, -\frac{24}{25}\right)$	Q12 $z = \pm(5 - 2i)$	Q18 $z = 1 - 7i$	Q24 $P = 3$, $Q = 4$

Q25 $ z = 2$, $ w = 3$, $\arg z = \frac{\pi}{6}$, $\arg w = \frac{\pi}{2}$, $zw = -3 + 3\sqrt{3}i$, $\frac{w}{z} = \frac{3}{4} + \frac{3}{4}\sqrt{3}i$ $ zw = 6$, $\left \frac{w}{z}\right = \frac{3}{2}$, $\arg(zw) = \frac{2\pi}{3}$, $\arg\left(\frac{w}{z}\right) = \frac{\pi}{3}$	Q31 $ z_3 = 4\sqrt{2}$, $\arg z_3 = \frac{3\pi}{4}$ $a = -4$, $b = 4$
Q26 $(x, y) = \left(\frac{5}{37}, \frac{7}{37}\right)$	Q32 $z = 3 + i$, $z = 3 - i$, $z = \frac{1}{2} + \frac{1}{2}i$, $z = \frac{1}{2} - \frac{1}{2}i$
Q27 $\pm \frac{1}{2}(\sqrt{6} + i\sqrt{2})$	
Q28 $z = 1 - 3i$	
Q29 12	
Q30 $z = -4$, $a = -6$, $b = 8$	